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I. INTRODUCTION

This report represents the conclusion of a five-year research effort investi-

gating various properties of ceramic materials. The research represents two main

areas of investigation. The first involved magnesium oxide and the role of anion

impurities, while the second was directed toward slow crack growth in silicon

nitride-silicon carbide ceramics. The oxide program involved development of fab-

rication techniques for anion doped materials and evaluation of the role of these

anions in the hot pressing response, grain boundary diffusion of nickel doped mate-

rial, grain boundary microhardness, and grain growth. Each of these aspects

represents a separate subheading, and results are reported essentially independently.

The carbide-nitride work employed commercial materials and the research

involved evaluation of a recently reported technique for study of slow crack growth

and the development of data for these commercial materials.

Four prior Annual Reports have been prepared as a part of this program, as

well as a number of publications in the open literature and oral presentations. The

titles and sources are listed in Appendix I. Each section of this report lists the

reports and presentations, providing information pertaining to this subject, includ-

ing publications in preparation but not yet available. Additionally, each section

includes new results and interpretations not previously reported in Annual Reports.

The authors would like to acknowledge the assistance of J. J. Brawley,

D. B. Duff, G. D. Chambliss, and M. A. Shakel in the laboratory.



II. OXIDE STUDIES

The oxide research was begun with the inception of this research program and

has received decreasing emphasis with time, consequently, the major portions of

the work have been completed, analyzed and reported in the open literature. Perti-

nent reports for each subdivision are listed under that topic. In addition, new results

and interpretation are included.

A. Fabrication

The importance of anion impurities on the hot pressing behavior is completely

described in Reports 1, 7 and 8 in the Appendix. No additional detail is available.

B. Grain Boundary Microhardness

The results here were given in a preliminary manner in Reports 7 and 11 in

the Appendix. Additional effort has been made to more clearly substantiate the lack

of any measurable effect of anions on microhardness. The additional analysis has

continued to indicate lack of any effect. It must be concluded, therefore, that with

the experimental precision of these tests, anions do not result in grain boundary

hardness changes.

C. Grain Growth

The results of this work have largely been published in Reports 2, 3, 4, 5, 6,

9, 10 and 12 in the Appendix. However, because of the large effort and because of

the general conclusions that have not been given in a previous report, they are

presented here.
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For undoped MgO, an activation energy of 65 - 2 kcal per gram-mole was

obtained for grain growth in high purity, theoretically dense material. Further,

squared (n = 2) grain growth kinetics corresponding to boundary control were ob-

served. However, such high purity material in the presence of only 0.5% porosity

gave pore inhibited grain growth.

For the doped MgO, the influence of the anions depended on the porosity levels

of the material. For less dense MgO ( > 1% porosity), kinetics were pore-controlled

and the effect of the anions, if any, were not immediately obvious. Influence of the

anions with respect to pore removal and boundary migration will be apparent only at

very low porosity levels. For the dense material (porosity < 1%), a distinct enhance-

ment in growth rates existed for OH- , F-, and Cl-, while rates for S - correspond

to those of undoped Fisher MgO.

At both 1300 and 15000 C, the promoter anions (OH , F , and Cl1) in the dense

material are equivalent to each other, especially at large anneal times. The grain

sizes for these anions are distinctly larger than for S2 - or the undoped material.

Hence, in comparison, the effect of the anions on grain growth is in the order

OH- = F > C1- > S2 - . Anion impurities were shown to be deleterious to densifica-

tion of MgO by hot-pressing in the order S2 - > Cl- > F > OH-. Hence, any effect

of these anions on grain growth can be related directly to their effect on densification.

In addition, the large quantity of data developed in the research clearly indi-

cated the complex time-dependent changes in the kinetics of grain growth occurring

in these ceramics. For example, in several cases, at least three types of kinetics

were observed, corresponding to, first, uninhibited growth (n = 2); next, limiting

growth (n =0 ); and finally, impurity controlled (n = 3). The existence of plateaus

3



in grain size (n = * ) as a transition in behavior has apparently not been specifically

reported previously.

D. Grain Boundary Diffusion

The initial results in Reports 9 and 13 in the Appendix have been extended over

a wider temperature range (1000 - 15000C) and have been analyzed for grain boundary

diffusion of nickel. Since the results have not been completely prepared for publica-

tion in the open literature, they are given here for the sake of completeness. Perti-

nent background literature experimental details are given first.

Diffusion on N. 2+ in single MgO crystals has been reported in the literature.
1

For cleaved MgO crystals, Zaplatynsky (Ref. 1) obtained an activation energy of

36 kcal per mole in the temperature range of 1200 to 14500C. Wuensch and Vasilos

(Ref. 2), working in the temperature range 1000 - 18500C, obtained activation energy

for N. 2+ diffusion as 48 kcal per mole. Further, the transport rates were not
1

significantly dependent on the impurity content or the dislocation densities. The

relatively low dependence of diffusion rates on dislocation density was also observed

in pipe diffusion studies (Ref. 3) for Ni 2 + in MgO, where the diffusion along the dis-

locations was not appreciably enhanced.

Grain boundary diffusion of N. 2 + has been investigated in polycrystalline MgO
1

and also in insulated grain boundaries in bicrystals of MgO. Results from diffusion

couples, in which a surface was maintained at constant concentration during the

diffusion annealing, indicate that the grain boundary diffusion is predominant in

polycrystalline MgO at temperatures below 17000 C (Ref. 4). Grain boundary diffu-

sion is considered to be an extrinsic process arising from impurity segregation and

4



precipitation at the grain boundaries. Grain boundary diffusion in MgO is not con-

fined to a layer of atomic dimensions, but extends over a zone of the order of mic-

rons. Further, the activation energy for grain boundary diffusion of N. 2+ in MgO is
1

between 23 and 46 kcal per mole (Ref. 4).

The procedures used in specimen preparation were straightforward. The MgO

polycrystals were prepared by hot-pressing Fisher MgO powder mixed with the dif-

ferent anion dopants. The hot-pressing equipment and techniques are given in

references 5 and 6. Table I gives the fabrication parameters of MgO specimens

used for the diffusion anneals. To promote grain growth to get reasonably large

sizes, these specimens were annealed at different temperatures for various lengths

of time prior to the actual diffusion runs. The parameters for the grain growth re-

heats are given in Table II.

Diffusion couples were prepared by packing the doped MgO polycrystals in

Baker Reagent Grade NiO powder in a 1/2 inch steel die and pressing at room tem-

perature to approximately 5000 psi. The compacts were then placed in alumina

crucibles and transferred to an electrical resistance furnace with SiC heating ele-

ments. The diffusion runs were made isothermally at temperatures ranging from

1000 0 C to 1500 0 C (at 100 0 C intervals) for approximately one week. To prevent

shattering of the MgO specimens, the diffusion couples were very gradually removed

from the furnace and air-cooled at the completion of the anneal. After most of the

adhered NiO was removed, the specimens were cold mounted. A face which was at

right angles to the MgO-NiO interface was metallographically polished, carbon

coated in a vacuum evaporator, and subsequently used in an electron microprobe

5



Table I. Composition and Fabrication Parameters for Specimens for Diffusion Anneals.

Initial Hot - Pressing Conditions As pressed As pressed

Specimen Dopant Max. Temp. Max. Press. Atmosphere* density bulk analysis

No. At. % C Ksi. gm/cm 3  At. %

30 0.58% S2 -  960 20 V 3.55 0.03% S

110 3% F- 1100 15 V 3.53 0.9% F

115 3% C1- 1100 15 V 3.56 0. 06% C1

120 3% OH- 1100 15 V 3.54

132 None 1000 15 A 3.56 None

* A = Argon; V = mechanical pump vacuum.



analyzer to determine the diffusion profiles*.

Briefly, the procedure was to make 220 , long sweeps parallel to the specimen

edge with a 12 wide beam. Sweeps were repeated after 12 A displacements in a

direction perpendicular to the specimen edge, until the nickel levels reached

background.

Diffusion data were obtained using the relationship

C(Xt DtK( 1/2 t -4D 21/4

6 2T(6D') t

where C(x,t) is the atomic concentration of diffusion specie

x is depth (cm)

t is time (sec)

D is lattice diffusion constant** (cm 2 /sec)

D' is the grain boundary diffusion constant (cm2/sec), and

6 is the effective grain boundary width (cm)

This expression is used here because it may be simplified to linear plots of In

[concentration] versus penetration, and the data here were consistent with such a

presentation. Sample plots are shown in Fig. 1. The diffusion constants were

determined by computer, using a linear-least-squares fit. The interval over which

the fit was determined was reduced until the standard deviation no longer decreased.

Activation plots were then made for each anion. Data for the undoped material

are given in Figs. 2-6, and for all data in Table 1, It is readily apparent that the

values of diffusivity and the calculated activation energies and pre-exponentials differ

* Courtesy H. H. Stadelmaier, North Carolina State University, Raleigh.

** Data from Ref. 7: D = 6.31 x 10 - 6 exp (-42800/RT).
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Table II. Grain Boundary Diffusion Coefficients x Width
For Ni In Anion Doped Polycrystalline MgO

Temp. Anion G. D. x 6 95% Confidence
oC Dopant cm3 /sec Limits (±)

1000 None 0.74 x 10 - 1 5 .14 x 1015
C1 1.43 .38
F 1.52 .12

1100 None 1.6 x 10-15 1.4 x 10 1 5

Cl 4.4 .78
F 2.1 .80
OH 4.2 .5
S 5.7 3.7

1200 Cl 4.2 x 10 1 5  1.2 x 1015
F 3.0 1.4
OH 7.5 1.5
S 5.9 1.4

1300 None 7.6 x 1014 1.1 x 10 14

Cl 5.6 .51
F 5.8 1.1
OH 3.8 .59
S 9.5

1400 None 0.43 x 1013 .038 x 1013
Cl 0.95 .20
F 3.3 .90
OH 0.31 .03
S 3.2 .20

1500 F 2 x 10 1 3  .59 x 10-13
OH 5.5 1.1
S 4.2 .82

8
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little with various dopants and the undoped control material. There are a number

of plausible explanations for this behavior. These are:

1. The anions, while residing at the grain boundaries, do indeed have no

effect on the grain boundary diffusion in nickel MgO.

2. The relatively low concentration of anions is uniformly distributed

throughout the compact, thus making the concentrations at the grain

boundary insignificant.

3. Other impurities in the magnesium oxide determine the grain boundary

diffusion behavior, and the contribution of anions is insignificant in

comparison.

Attempts were made to define the location of the anions in the compact; results

were negative, tending to support No. 2 above. However, negative results are sus-

pect, because sensitivity limits for these anions in the probe are unclear. With

respect to Item 1, because of the widely varying physical characteristics of these

anions, it is difficult to accept the premise that they all behave essentially identically.

From size considerations, fluorine and hydroxyl should be in solution, while chlorine

and sulfur should not. Previous results on the role of these anions on densification

in MgO agree with the concept, in that chlorine and sulfur were rejected from the

lattice into gas phase. It should be emphasized that models based on high energies,

binding defects together, could predict a reduction in diffusivity associated with

added impurities. However, the results here indicate neither a reduction nor

increase.

The information available here, and in the literature, suggest reason No. 2,

that the impurity concentration at the boundary is simply too low to introduce

16



measurable effects. However, the concentration retained was essentially equilib-

rium, suggesting that with normal processing, anions should not affect grain

boundary diffusivity.

17



III. CARBIDE RESULTS

Silicon nitride and silicon carbide are potentially the best structural

materials for high temperature application because of their properties, i. e.

high fracture energy, excellent thermal shock resistance, corrosion, and abrasion

resistance to a gaseous environment, etc. Slow crack growth is known to occur in

some ceramic materials like glass, in which the measured strength depends upon

the length of time a load is applied or upon loading rate. Evans and Wiederhorn

(Ref. 8), have recently shown that the relationship between the crack velocity and

stress intensity factor (KI) can be used to predict the life-time of a structural

component and safe working stress level.

A method of fracture toughness testing, called Constant Moment Beam [CMB],

developed by Frieman (Ref. 9), employs a constant moment on the specimen arm

even when the crack propagates; this gives a control on crack velocity. In the pre-

sent study, various grades of silicon carbide and nitride were tested with the CMB

method to examine the existence of slow crack growth. The microstructures and

fracture surfaces were also examined to correlate the fracture toughness values and

the microstructural features.

Previous reports (#10 in Appendix) covered much of the earlier work, and

included

1. Design and preparation of a jig for CMB fracture toughness testing.

2. Evaluation of jig performance to determine its mechanical response.

3. Development of a suitable specimen configuration for the application of a

constant moment and rigid grip. The formulae for DCB testing (fracture

18



toughness) and CMB testing (strain energy release rate) were modified

for this modified specimen configuration.

4. Testing of glass and plexiglass (PMMA) with DCB and CMB methods with

this jig to establish all the experimental details.

5. Development of machining techniques for modified specimen preparation

of silicon nitride and carbide for CMB testing.

6. Evaluation and development of suitable etchants after all the etchants

available in the literature were tried unsuccessfully.

A. Experimental Procedures

1) Specimen Preparation. Preparation of fracture specimens out of HP Si 3 N4

HS - 130 is extremely time-consuming. To simplify the specimen preparation,

easily available materials like glass and plexiglass were used to establish all the

experimental details and specimen geometry. These materials were available in

sheet form and were easily cut and machined to the desired shape by conventional

(plexiglass) or routine diamond (glass) techniques. The glass specimens were with

either conventional or modified configuration.

The procedure which was finally developed (Fig. 7) for the preparation of

modified specimens of silicon nitride and carbide involved cutting slabs (1-1/2" x 1"

x 1") on a precision wafering machine using an available diamond wheel*. Very slow

rates were required (. 025 depth/pass at 0.125 in/min pass speed) and the wheel

required redressing after each pass. A different wheel** was superior (. 05 depth/

* Norton Co. 5x0. 019x0. 625D220-M100M-1/8

** Norton Co. 6x0. 025x0. 625SD160-R100B69-1/8
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As Received

Step (a)

Steps a-f are . 1" thick

/
Steptep (d)(b)

Step (c) Step (d)

Step (e)

Step (f)

Fig. 7. Machining sequence for modified form of fracture
specimen
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pass at 0.4 in/min) but redressing was still required.

A diamond core drill (3/8 in. dia.) was used to form the hole (Fig. 7, Step b),

and it was necessary to drill part way through from one side, turn the piece over,

and finish from the other side to avoid chipping the second surface. A 1/4" core

drill was used to smooth the hole interior. The material between the arms was cut

with the diamond saw (Fig. 7, Step c).

A groove halfway deep (Fig. 7, Step d) was cut, then a notch was made in the

specimen with a diamond drill (Fig. 7, Step e). The length of the notch was found

to be critical in ease of producing microcracks. A length of 3-5 mm was found to be

ideal.

The last step in making the specimen was to produce a microcrack (Fig. 7,

Step f). In either fracture toughness test (CMB or DCB), the specimen was frac-

tured by the extension of a microcrack produced in the specimen. The uncracked

specimen was held (lightly tightened) in the middle at a distance of 3 to 4 mm from

the tip of the notch with a hardened tool steel clamp, then a load was applied with the

tensile testing machine at a crosshead speed of 0. 0002 in/min. At a particular load,

a crack was produced at the tip of the notch along the side groove and propagated

until it was arrested by the compressive stress field produced by the clamp on the

specimen. The crack propagation was indicated by a sudden small drop in the load,

and exactly at that instant, the crosshead motion was reversed to reduce the load.

The distance at which the clamp was tightened from the tip of the notch, the amount

of tightening, and the crosshead speed during load application were found to be

critical in producing the microcrack. Suitable values were found by trial and error.
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After cracking, all specimen dimensions were recorded and the crack length,

L, was measured with a microscope.

2) DCB Testing. DCB fracture toughness testing using the modified specimen

form was accomplished by using only parts I (the three-line grip) and II of the CMB

jig (Fig. 8). The specimen containing the microcrack was held with the grip of part

I by tightening the screws. Part II was connected to part I and to the testing machine,

thus lying parallel rather than perpendicular to part I. A load was applied to the

specimen by downward crosshead motion of the tensile testing machine at a cross-

head speed of 0. 002 in/min. The load at which the specimen fractured was noted.

3) CMB Testing. The entire CMB assembly (Fig. 8) was used for the constant

moment testing. The jig was attached to the Instron and while it was hanging, the

ounter- - o o

o o , I, = o 0,

LtWE Ltw.

Fig. 8. Schematic drawing of CMB testing jig.
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Instron was balanced to zero load, and the transducer used to measure the crack

velocity was calibrated. Loading was then started at the desired crosshead speed.

The microcrack in the specimen was constantly being observed with a telescope

during loading. For glass and plexiglass specimens, it was observed that when

the crack started propagating in the specimen, the load almost remained constant

until the specimen completely fractured. This constant load (Pl) was used to calcu-

late the toughness value.

The movement of the tip of the transducer during the test was recorded on a

chart by feeding the signal from the transducer to obtain a crack velocity. Cross-

head speeds of 0. 02, 0. 002, 0. 0002, 0. 00002, 0. 05, 0. 005, and 0. 0005 cm/min.

were used (the very slow speeds were obtained by special gear reductions to the

Instron). In all cases, the fracture surface was carefully preserved.

4) Microstructure Examination. The fracture of a material depends to a

great extent on its microstructure. The materials were polished and etched in the

following manner to observe the microstructure.

Each specimen mounted on a plastic mold, was polished on successively finer

diamond wheels, ranging from 100 mesh to 6 micron. About 2-4 minutes per wheel

were used. Then the specimen was polished on a wet cloth with 0. 3 micron Alumina

powder suspension in water for 15 minutes, and then 0. 05 micron Alumina for 10-12

hours in a vibratory polisher.

Several etchants, known in the literature, were tried and an effective etchant

was finally obtained. The polished specimen was etched in a boiling mixture of

HF, H20 2 and HNO 3 (volume ratio of 5:6:1) in a platinum crucible.
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The fracture surface of each specimen, produced by the fracture toughness

testing, was cut to 2mm x 3mm size by mounting the fractured specimen in wax and

using a precision wafering machine. The mounting wax was dissolved in acetone in

an ultrasonic cleaner. This fracture surface was observed under SEM.

B. Observations and Results

The observations of DCB fracture toughness testing of conventional and modi-

fied glass specimens (Fig. 9 and 10) are listed in Tables III and IV. The values of

Gc for both specimen geometries compare very well indicating that the modification

of the formula for Gc is correct. Observations of DCB fracture toughness testing of

silicon nitride and silicon carbide with modified specimens are presented in Tables V

and VI. Observations of CMB fracture toughness testing with modified specimens

of glass, plexiglass, silicon nitride and silicon carbide are tabulated in Tables VII

to XII.

- 0.35 "

,-~0.5"
.6 < - < 21

F L

Fig. 9. Conventional specimen configuration
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3/8 "

I

Fig. 10. Modified specimen

Table III. DCB Fracture Toughness Testing of Glass Using
Conventional Specimen

L Mean t b W F G
Spec. inch inch inch inch lbs. ergs cm2

No.

1 0.41 0.253 0.02 0.0394 1.4 8520

2 0.68 0.238 0.017 0.0394 0.64 8880

3 0.35 0.253 0.022 0.0394 1.34 6860
4 0. 39 0. 237 0. 026 0. 0394 1. 6 9600

Avg. G = 8465 ergs/cm 2
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Table IV. Toughness Results for Glass by DCB Technique

and Modified Specimen

E = 81.0 x 1010 dynes/cm 2  t = 1.27 cm = 0.75 cm

w = 0. 3048 cm b =0.1524 cm

1 L F Gc Conv.

Spec. No. cm cm kg ergs/cm2

1 0.45 2.0 2.6 8947.28

2 0.40 2.05 2.5 9149.4

3 0.43 2.15 2.45 9391.2

4 0.39 2.15 2.40 8502.2

5 0.42 2.10 2.5 9503.3

6 0.39 2.05 2.55 9311.6

Avg. Gc = 9134 ergs/cm 2

Table V. DCB Fracture Toughness Testing, Silicon Nitride

Material: H. P. Si 3 N4 (HS - 130 Norton) E = 3. 12 x 1012 dynes/cm 2

Method of testing: DCB t = 1. 27 cm

Specimen configuration: Modified t* = 0.75 cm

Spec. W 1 b L F Gc Cony.

No. cm cm cm cm kg ergs/cm2

1 0.294 0.775 0.155 1.324 15.0 75744.0

2 0.2415 0.975 0. 127 1.360 12.7 90793.8

3 0.297 0.825 0.163 1.274 21.9 84432.1

Avg. Gc =83656.6 ergs/cm2
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Table VI. DCB Fracture Toughness Testing, Silicon Carbide

Material: SiC (Refel)

Test: DCB

Specimen configuration: Modified

Density = 3. 06 gm/cm3  E = 3. 66 x 1012 dynes/cm 2

t = 1.15 cm t* =0.7 cm

Spec. W b 1 L F Gc Conv.

No. in in cm cm kg ergs/cm 2

1 0.12 0.06 0.74 1.26 16.2 76151.9

2 0.115 0.057 0.82 1.31 15.6 80384.2

3 0.12 0.062 0.76 1.29 16.6 81228.5

Avg. Gc = 79254. 9 ergs/cm2
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Table VII. Toughness Results for Glass by CMB Technique and Modified Specimen

d5 d5--d6 est -
Crosshead dT dT

Spec. speed in/min. experimental G mod Crack vel
No. in/min. 1 kg x 104 in/min. ergs/cm 2  in/min.

1 0.0005 2.2 13.3 x10-4  7362.7 0.01848

2 0. 0005 2.1 -0.39 13.05 x 10- 4  6961.6 0.01865

3 0.0005 2.15 13.21 x10-4  7160.6 0. 01862

4 0.005 2.35 - 3.7 15.1 x 10- 3  7986.0 0.2015

5 0.005 2.35 14.95 x 10- 3  7986.0 0.19955

6 0.005 2.3 14.5 x 10- 3  7775.4 0. 19615

7 0.05 2.6 - 36.0 28.6 x 10- 2  9082.0 3.5798

8 0.05 2.5 27.2 x 10-2 8636.0 3.4914

9 0.05 2.55 29.1 x 10-2  8857.0 3.68828

10 0. 05 Broke on side

11 0. 0002 2.05 0.16 5.1 x 10- 4  6742.4 0. 002783
cm/min

12 0.00002 1.9 0.02 6.2 x10 5  6221.64 0.00034
cm/min

d6
est. obtained from page 46



Table VIII. Toughness Results for Plexiglass (PMMA) by CMB Technique Using Modified Specimen

E = 2.77x1010 dynes/cm 2

W = 0.11 in b = 0.055 in t = 1.27 cm t* = 0.75 cm

1 = 0.4 cm Lc = 3.81 cm Lm = 7. 7 cm

d6
-K ICrosshead d6 dT

- est. 7
Spec. Speed dT experimental Crack vel G mod 10 dyne

No. cm/min. P1 kg in/min. in/min. mm/sec ergs/cm2  cm 3 / 2

1 0.2 3.4 475,112 11.4

2 0.2 3.5 491,974 11.65

3 0.2 3.5 -0.12 491,974 11.65

4 0.2 3.35 468,421 11.35

5 0.2 3.6 512,281 11.9

6 0;02 3.2 -0.0168 0.082 0.238 427,421 10.85

7 0.02 3.25 0.088 0.231 446,049 11.1

8 0.02 3.2 0.081 0.220 427,421 10.84

9 0.02 3.15 0.0804 0.209 406,493 10.58

10 0.02 3.2 0.0813 0.225 406,049 10.58



Table VIII (continued)

d6
Crosshead d6 dT KI

Spec. Speed dT e experimental Crack vel G mod 10 dyne
No. cm/min. P1 kg in/min. in/min. mm/sec ergs/cm2  cm 3/

11 0.005 2.8 -0.00361 0.0196 0.0252 364,161 10.0

12 0.005 2.7 0.0226 0.0242 347,120 9.78

13 0.005 2.7 0.020 0.0232 347,120 9.78

14 0.005 2.9 0. 0185 0. 0231 381,661 10.25

15 0.005 2.85 0.0201 0.0283 372,872 10.12

16 0.002 2.6 -0.0017 0.0087 0.00510 330,464 9.55

17 0.002 2.55 0.0085 0.00633 322,290 9.41

18 0.002 2.6 0.0096 0.00558 330,464 9.55

19 0.002 2.4 0.0077 0.00596 314,217 9.3

20 0.002 2.5 0.0082 0.00672 298,380 7.57

21 0.0002 2.3 -0.00014 0.00065 0.00016 282,952 8.82

22 0.00002 2.1 -0.00001 0.000073 0.000023 253,326 8.35



Table IX. Toughness Results by CMB Technique
for Si 3 N4

Material: H. P. Si 3 N4 (HS - 130 Norton)

Test: CMB

Specimen configuration: Modified

E = 3.12 x 1012 dynes/cm 2

t = 1.27 cm t* = 0.75 cm

1 = 1.0 cm Lc = 3.81 cm

Crosshead

Spec. W b Speed Gc Mod
No. cm cm cm/min 1 kg ergs/cm

1 0.259 0.132 0.02 16.1 74358.6

2 0.104 0.104 0.002 14.1 83347.1

3 0.252 0.125 0.0002 14.8 69192.2

4 0.263 0.132 0.00002 15.13 66716.2

5 0.260 0.135 0.005 17.7 86119.3

6 0.262 0.131 0.0005 16.1 74251.3

7 0.242 0.120 0.0002 16.1 87431.3

8 0.164 0.082 0.00002 9.7 76046.2

9 0.281 0.145 0.0005 17.8 74996.7

Avg. Gc = 76976
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Table X. Toughness Results by CMB Technique

for SiC

Material: SiC (Refel) 1 = 1. 5 cm

Test: CMB t* = 0.7 cm

t = 1.15 cm L =3.81 cm

Crosshead

Spec. W b Speed P kg G Mod 2
No. in in cm/min. p 1  ergs/cm2

1 0.11 0.055 0.00002 15.2 81113.3

2 0.12 0.006 0.0002 16.3 77365.8

3 0.084 0.042 0.0002 11.5 82875.4

4 0.105 0.053 0.009 14.4 79491.5

5 0.12 0.062 0.00002 17.0 83518.0

Avg. Gc = 79228

Table XI. Toughness Results by CMB Technique

for SiC

Material: SiC (Ceradyne) Density = 3.04 g/cm3  t* = 0.7 cm

Method: CMB E = 3. 64 x 1012 dynes/cm 2  t = 1. 15 cm

Specimen configuration: Modified 1 = 1.5 cm L = 3.81 cm
c

Crosshead

Spec. W b Speed G Mod

No. in in cm/min. 1 kg ergs/cm2

1 0.154 0.077 0.002 21.0 75237.6

2 0.154 0.077 0.0002 21.8 80202.9

3 0.154 0.077 0.00002 21.9 80764.4

Avg. Gc = 78734
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Table XII. Toughness Results by CMB Technique, Summary

Test: CMB

Specimen configuration: Modified

t = 1.27 cm t* = 0.75 cm

1 = 1.0 cm L = 3.81 cm

E Crosshead

Material Density 1012 d W b Speed P1 kg Gc
g/cc cm in in in/min. 1  ergs/cm2

Silicon Carbide

Carborundum 2. 98 3. 54 0. 105 0. 053 0. 0002 12.4 60541

Norton

A 3.10 3.70 0.086 0.043 0.0002 11.9 86441

B 3.10 3.70 0.09 0.045 0.00005 12.2 90303

Silicon Nitride

AVCO 3.10 3.12 0.260 0.131 0. 00005 16.0 74196
cm cm



Slow crack growth was observed for both glass and plexiglass. The crack

dgvelocity was determined by obtaining the rate of change of deflection, , of the tip

of the transducer. During the application of load, there was a very small rate of

change of deflection until the crack started to propagate. As the crack propagated,

the load remained almost constant and - remained constant, but had a value much
dT

d6
higher than that before crack propagation. This - was used to calculate the crack

velocity and the constant load P1 to calculate the strain energy release rate.

As the crack approached the end of the specimen, the fracture became cata-

d6
strophic, the load suddenly dropped to zero, and , corresponding to this period,

could not be measured.

The values of strain energy release rate G are plotted vs. crack velocities

for glass in Fig. 11. The plot shows that with increased crosshead speed or loading

rate, both the crack velocity and strain energy release rate increased.

In all silicon nitride and carbide tests, it was observed that the load increased

continuously, the rate of increase depending on the crosshead speed. The load did

not remain constant during any period, and it dropped suddenly to zero at the time

of fracture of the specimen, which was catastrophic. No slow crack growth was

observed with the telescopic observations. The values of fracture toughness obtained

do not show any definite dependence on crosshead speed or loading rate (Tables IX-

XI). They are in agreement with the values obtained by DCB fracture toughness

testing.

C. Discussion of the Results

1) Behavior of Glass. The values of strain energy release rate plotted vs.

crack velocity in case of glass, are compared with those in the literature.
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Fig. 11. Gc for slow crack growth in glass microscope slides
in room air using constant moment test



The exponential dependence of strain energy release rate G on crack velocity

in the case of glass, can be explained on the basis of Charles and Hillig theory for

slow crack growth in glass (Ref. 10). According to their theory, the crack velocity

is given by

SVo=V exp[- E vo)+rVm/p - V* / RT

where E"o) is the activation energy for surface dissolution at a stress free surface.

rVm/p represents the effect of the surface tension in retarding crack motion,

where a is the surface free energy of the glass corrosion product interface, Vm is

the molar volume of glass and p is the radius of curvature of the crack tip.

V (~) a6 = 0 has the units of volume and is considered as activation volume.

T is the temperature, R is the gas constant, Vo is a constant, and a is the stress

acting at the crack tip. Therefore, the functional dependence of crack velocity on

the a can be expressed as

C=A exp-[ B -a]

where A and B are constants.

That is, V =A exp - B]

Now the stress intensity factor K1 is directly dependent on the stress at the crack

2
tip and is related to strain energy release rate G by K1 = 2 EG 1 , as previously

mentioned. So the exponental increase of G with crack velocity is expected (Fig. 11).

The nature of the plot of G vs. crack velocity obtained by Frieman also has the

same nature. The difference in G values (Fig. 11) corresponding to a particular

crack velocity is probably due to the different humidity conditions at which the test-

ing was done.
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2) Behavior of Plexiglass. In the case of plexiglass, the elastic modulus is

time dependent (Ref. 11) and so the stress intensity factor K1 was calculated back

from values of G vs. crack velocity, and was plotted in Fig. 12. Marshall and

Williams have shown that crack speed can have a considerable effect on toughness

because of the sensitivity of modulus E and yield stress Uy of plexiglass to changes

3-

0

w

2-

o - Calc. From Ref. II

0 , I 1,,,,,I , , , 1111 1111, I I I 1,, 1,, I I,,,,

10-5 10-3 10-1

Crack Velocity mm/sec

Fig. 12. Gc for slow crack growth in plexiglass in room air using
constant moment test

37



in straining rate. As a crack accelerates there is a corresponding increase in the

straining rate at the crack tip, resulting in an increase in E and ory, thereby pro-

ducing an increase in Kic. The present results agree with those published in the

literature (Fig. 12).

The agreement of results on glass and plexiglass with the published results

indicate that the CMB fracture toughness testing using modified specimen, the jig,

and the specimen geometry designed for the application of this technique are suitable

for studying the slow crack growth in a material.

3) Behavior of Silicon Nitride and Silicon Carbide. As mentioned earlier,

tests on silicon nitride and carbide did not show evidence of slow crack growth.

However, the steady increase in the load indicated by the Instron, had produced a

d6
constant rate of deflection - of the tip of the transducer. The source of this deflec-

dT

tion was analyzed in the following manner, in order to determine if any observed

deflection was due to crack propagation.

Prior to fracture, in the absence of slow crack growth, the deflection 6 el

indicated by the transducer consisted of two parts:

6 el = 6 s + 6j

where 6 is due to the elastic deflection of the specimen due to the applied bending

moment and 6j is due to the elastic deformation of the jig itself;

d6 d6 d6j

SdT -T dT

During the evaluation of the performance of the jig, 6j vs. load curve was

d6 F
plotted (Fig. 13). The slope of this curve gives . From the load time curve,
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Fig. 13. Indicated deflection of CMB jig versus load. Elastic
deflection of specimen eliminated by plates bolted to
opposite sides of part I in Fig. 8.

39



dF
- is obtained and
dT

d6s dj dF

dT dF dT

d6
So can be obtained.

dM
Also, the rate of change of moment dT applied on the specimen arm can be

ddT

obtained, and, using the elastic theory of bending of beams, an estimate of dT is

obtained.

Relationship between rate of change of deflection and rate of change of moment

(Fig. 14):

If b = elastic deflection of the specimen

6 s = deflection of the transducer due to elastic deformation of specimen

arm

Lt = distance of the transducer from the fulcrum

b 6
01 =2 - tan 02 a Lt

Mx
EI

Ma
For x = a, 1 - E I

I. b bI
Ma

2

El

/ 4~4 , Lt

Fig. 14. Schematic relationship between elastic deflection of
specimen and deflection indicated by transducer
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Also

s = a L t M6= M
EI

d6, = a Lt dM

"dT EI dT

since a, Lt, and I are constant prior to crack propagation. For this configuration,

we can then calculate

d6s dS dS. aL d6. dF
d6 el - s+ j t dM+ xdF

* dT dt dt dt EI dT dF dT

and using measured values of dM for each data set, dc from initial jig evaluation
dT dF

(Fig. 14) and A, Lt, E, and I from the specimen, it was determined that calculated

elastic deflections and observed deflections agreed within a scatter of ± 10%. These

are summarized in Table XIII. This was one confirmation of lack of slow crack

growth.

To further evaluate the question of slow crack growth occurring in these

materials, the specimen was subjected to a constant load over a long period of time.

Specifically, a modified specimen of SiC (Refel) with dimensions t = 1. 15 cm,

t*= 0. 7 cm, w = 0. 067 in, b = 0. 033 in. was subjected to load 10. 4 kg = P 1 using the

modified method (CMB) with 1 = 1.5 cm, Lc = 3. 81 cm. This load corresponds to

80% of Gc average (80, 000 ergs/cm2 ) for SiC (Refel). Initially, the load was applied

with a crosshead speed of 0. 0002 cm/min. When the load reached 10. 5 kg, the

crosshead motion was stopped and the specimen was left loaded for one day. No

decrease in load was observed during this time except in the first 2-3 minutes in

which the load dropped to 10.4 kg due to the testing machine. When loading was

started again, maintaining a crosshead speed of 0. 0002 cm/min., the specimen
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Table XIII. Calculated Elastic Deformation During Test -

and Observed Deformation (i)b

Material: H. P. Si 3N4 (HS - 130 Norton) Specimen: Modified

Test: CMB dF = 3 x 10 in/kg

d6ob
dM d6 d6 d6 dT

Crosshead dT dT dT dT experimental

Spec. Speed kg-cm in/min. in/min. in/min, in/min.
No. cm/min. min. x 105 x x 10x 105  x 105

1 0.02 24.8 19.5 33.7 53.2 50.3

2 0.002 2.51 1.97 3.81 5.78 5.45

3 0.0002 0. 251 0.197 0. 349 0.546 0. 502

4 0.00002 0.024 0.018 0.032 0.05 0.046

5 0.005 6.24 4.91 8.41 13.3 12.46

6 0.0005 0.629 0.495 0.841 1.33 1.20

7 0. 0002 0.251 0.197 0.359 0. 556 0. 527

8 0. 00002 0. 024 0.018 0.052 0.07 0. 066

9 0.0005 0.629 0.495 0.783 1.27 1.01

Material: SiC (ceradyne)

1 0.002 2.54 2.0 2.62 4.62 4.23

2 0.0002 0.255 0.2 0.259 0.459 0.43

3 0. 00002 0. 0259 0.02 0. 026 0. 046 0. 0415

Material: SiC (Refel)

1 0. 00002 0. 025 0. 019 0. 036 0. 055 0. 049

2 0. 0002 0. 256 0. 201 0. 338 0. 539 0. 51

3 0. 0002 0.259 0. 203 0.487 0.60 0.656

4 0.002 2.61 2.05 3.93 5.98 5.21

5 0.00002 0.025 0.052 0.019 0.033 0.047

42



fractured suddenly at P 1 = 11. 2 kg, giving a value of fracture toughness Gc as

76190 ergs/cm2 . That is, the specimen was loaded for one day at a load correspond-

ing to 87. 6% of the observed value of Gc . If slow crack growth had taken place in the

specimen, the load would have slowly dropped as the crack proceeded. Since this

did not occur, lack of slow crack growth is again indicated.

The scatter in the observed values of fracture toughness for silicon nitride and

carbide must be due to the inhomogeneities in the material. In homogeneous mate-

rials like glass and plexiglass, the scatter was much less.

4) Microstructure and Fracture Surface Examination. The polished and

etched microstructures of various silicon carbide and silicon nitride materials are

shown in Figs. 15-18. Average grain size and grain morphology (equiaxed or

elongated) of these materials are shown in Table XIV. Etched surfaces of Refel SiC

and AVCO Si 3 N4 did not produce good microstructures. Any other etchants could

not be tried due to lack of knowledge of effective etchants. All silicon carbides show

the presence of a second phase which may correspond to the additives used during

the densification of these materials.

The fracture surface of the materials produced during the fracture toughness

testing are shown in Figs. 19-25. The mode of fracture (transgranular or inter-

granular) and surface topography are shown in Table XIV. Cleavage steps and river

patterns are visible in case of transgranular fracture. The surface is rougher when

the fracture mode is intergranular, rather than transgranular.
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FIG. 15 FIG. 16
POLISHED AND ETCHED MICROSTRUCTURE POLISHED AND ETCHED MICROSTRUCTURE

OF NORTON HS-130 SILICON NITRIDE
(10, SOOX) OF AVCO SILICON NITRIDE (1000 X)

FIG. 17 FIG. 18

POLISHED AND ETCHED MICROSTRUCTURE POLISHED AND ETCHED MICROSTRUCTURE
OF REFEL SILICON CARBIDE (1010 X) OF CARBORUNDUM SILICON CARBIDE (112 X)

FIG. 19 FIG. 20

POLISHED AND ETCHED MICROSTRUCTURE FRACTURE SURFACE OF CERADYNE
OF NORTON SILICON CARBIDE (5700 X) SILICON CARBIDE (1150X)
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FIG. 21 FIG. 22

FRACTURE SURFACE OF NORTON FRACTURE SURFACE OF AVCO
HS-130 SILICON NITRIDE (22000 X) SILICON NITRIDE (5600 X)

*

FIG. 23 FIG. 24

FRACTURE SURFACE OF REFEL FRACTURE SURFACE OF CARBORUNDUM
SILICON CARBIDE (1190 X) SILICON CARBIDE (205 X)

FIG. 25

FRACTURE SURFACE OF NORTON
SILICON CARBIDE (2260 X)
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Table XIV. Average Grain Size and Grain Morphology

Fracture

Density Grain Size Grain Mode of Fracture Toughness
Material g/cc Microns Morphology Fracture Topography ergs/cm2

Silicon Carbide

A. Carborundum 2.98 50 Equiaxed Transgra- Smooth 60541
nular.

B. Norton 3.1 2 Equiaxed Intergra- Rough 88372
nular.

C. Ceradyne 3.04 10 Elongated Intergra- Rough 78734
and nular.

equiaxed

D. Refel 3.06 10 Equiaxed Partly Rough 79288
Intergra-
nular

and
Partly
Transgra-
nular.

Silicon Nitride

A. HS-130 Norton 3.12 1 Elongated Intergra- Rough 76976

and nular.
equiaxed.

B. AVCO 3.10 5 Equiaxed Intergra- Rough 74196
nular



D. Correlation between Fracture Toughness Values,

Microstructure, and Fracture Surface.

The average fracture toughness values of the silicon carbide and silicon

nitride materials are shown along with the density, grain size, grain morphology,

mode of fracture and fracture topography in Table XIV. Microstructures are given

in Figs. 15-25.

Ceradyne and Refel silicon carbides have almost equal fracture toughness

values, 78734 and 79288 ergs/cm2, respectively, and grain sizes,10 microns, are

also equal. Both of them show rough fracture surfaces. Even though Ceradyne

contains some elongated grains and shows entirely intergranular fracture, it does

not seem to produce a rougher fracture surface which would absorb higher energy

during fracture.

Norton silicon carbide has a higher density (3.1 g/cc), and smaller grain size,

2 microns. The fracture is completely intergranular and produces a rough surface.

Even though it is difficult to determine from the fracture surface photographs,

It can be easily seen that complete intergranular fracture of a material with smaller

grain size will produce a larger amount of fracture surface area than that with a

courser grain size. For this reason it will absorb higher amounts of energy per

unit of apparent area and will have a higher fracture toughness value. Norton SiC

has a Gc value of 88,372 ergs/cm 2 , which is consistent.

Carborundum SiC has a much higher grain size, 50 microns, lower density,

2. 98 g/cc, and has mostly transgranular fracture, showing cleavage steps and river

patterns, and a smoother surface appearance. It has a much lower value of Gc,

60541 ergs/cm2
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HS-130 Norton and AVCO silicon nitride show intergranular fracture and have

a very similar fracture surface appearance. Their densities are almost equal, 3.12

and 3. 10 g/cc, respectively. HS-130 Norton Si 3N4 has a finer grain size (1 micron)

than AVCO Si 3 N4 (5 microns), and hence, has a slightly higher value of fracture

toughness.

From these observations and discussion it can be said that the denser material

with finer grain size which fractures completely intergranularly will have a higher

fracture toughness value.
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IV. CONCLUSIONS

1. The CMB fracture toughness testing using modified specimens, the jig,

and the specimen geometry designed for the application of this technique are suitable

for studying slow crack growth in material. Modification to specimen geometry

must be carefully considered. If this is done, accurate values of fracture toughness

may be obtained.

2. Glass shows slow crack growth at room temperature and the strain energy

release rate increases exponentially with the crack velocity.

3. Slow crack growth occurs in plexiglass (PMMA) at room temperature and

the stress intensity factor increases with crack velocity.

4. Slow crack growth does not occur in hot pressed silicon nitride and silicon

carbide at room temperature. This important finding precludes the use of proof

testing to predict lifetime under stress.

5. The strain energy release rate increases with increase in loading rate in

the case of both glass and plexiglass, but remains constant with increase in loading

rate for silicon nitride and silicon carbide.

6. The denser material with finer grain size which fractures completely

intergranularly will have a higher fracture toughness value.
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